What Happens When You Put Evolution on Replay?

Space.com | 3/8/2018 | Staff
n.king (Posted by) Level 3
Click For Photo: https://img.purch.com/h/1000/aHR0cDovL3d3dy5zcGFjZS5jb20vaW1hZ2VzL2kvMDAwLzA3NC83NDYvb3JpZ2luYWwvYmV0dWwta2FjYXIuanBlZw==?&imgtype=.jpg

A team of scientists from the University of Arizona have engineered an instant replay switch for evolution. The technique, known as ancestral gene resurrection, inserts ancient genes into modern E. coli bacteria. It gives researchers the opportunity to watch evolution unfold again and again, providing insights into how life evolved on early Earth, and what it might potentially look like on other planets.

"Organisms can function just fine even when they've been engineered with an essential gene that is over 700 million years old," the study's lead author Betül Kaçar, an astrobiologist at the University of Arizona, tells Astrobiology Magazine. "This work is a proof of concept. The next questions are: How far back can we go? And would we expect the sequences to evolve and function the same way that they did? Just because sequences are similar doesn't mean that the gene will function in the same way."

Kaçar - Colleagues - Work - Journal - Molecular

Kaçar and colleagues published their work in the Journal of Molecular Evolution.

The development of recombinant DNA technology – taking a gene from one organism and inserting it into the genome of another – began to provide opportunities for researchers to answer Gould's question experimentally. Kaçar worked with her postdoctoral advisor Eric Gaucher at Georgia Tech on a NASA-funded project to replay evolution again and again with the laboratory workhorse bacterium E. coli. Kaçar wouldn't be evolving E. coli from scratch, but rather rewinding the evolution of a specific key protein that the bacteria needed to survive.

Kaçar - Sequence - Gene - Elongation - Factor-Tu

In 2008, Kaçar reconstructed the 500-million-year-old sequence of an important bacterial gene called Elongation Factor-Tu (EF-Tu), which helps to string together amino acid building blocks into fully formed proteins. This version of EF-Tu emerged just after the Cambrian explosion, when life began growing ever more complex. As a ribosomal protein, it sat at the heart of the cell,...
(Excerpt) Read more at: Space.com
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!