Wildfires: Smoke and cloud interactions unexpectedly result in cooling

ScienceDaily | 3/5/2018 | Staff
Alenaaa (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2018/03/180305160208_1_540x360.jpg

"If you change the particles, you are changing the composition of the cloud," says Xiaohong Liu, a UW professor in the Department of Atmospheric Science and the Wyoming Excellence Chair in Climate Science. "For our study, we found the smoke comes down and can mix within the clouds. The changed clouds are more reflective of sunlight. Brighter clouds counteract the greenhouse effect. It creates cooling."

Liu is the corresponding author of a paper, titled "Biomass Smoke from Southern Africa Can Significantly Enhance the Brightness of Stratocumulus over the Southeastern Atlantic Ocean," that was published March 5 (today) in the Proceedings of the National Academy of Sciences (PNAS).

Zheng - Lu - UW - Research - Associate

Zheng Lu, a UW research associate in Liu's research group, was the paper's lead author. The two used the National Center for Atmospheric Research (NCAR)-Wyoming Supercomputing Center in Cheyenne to conduct high-resolution computational modeling of the smoke and its effects on the clouds.

Other contributors to the paper were from the University of Maryland-Baltimore County (UMBC); the University of Science and Technology of China; the NASA Goddard Space Flight Center; and the University of Michigan.

Years - Scientists - Smoke - Clouds - Effect

For years, scientists determined that smoke, overall, diminishes the clouds' cooling effect by absorbing light that the clouds beneath the aerosols would otherwise reflect. This new study does not dispute that phenomenon. However, more dominantly, the new study found that smoke and cloud layers are closer to each other than previously thought. This makes the clouds more reflective of light and, thus, accelerates the clouds' cooling effect. This is due to the tiny aerosol particles from the smoke that serve as the nuclei for the formation of cloud droplets.

"The purpose of this paper is to look at these competing processes. Which one is more important?" asks Zhibo Zhang, a co-author of the paper and an associate professor in the Department of Physics...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.