How receptors for medicines work inside cells

phys.org | 9/5/2017 | Staff
mel4 (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/howreceptors.jpg

G protein-coupled receptors are the key target of a large number of drugs. Würzburg scientists have now been able to show more precisely how these receptors act in the cell interior.

The human genome encodes hundreds of G protein-coupled receptors (GPCRs). These form the largest group of receptors through which hormones and neurotransmitters exert their functions on our cells. Therefore, they are of highest importance as drug targets: around half of all prescribed drugs act on these receptors - and thus GPCRs help in the treatment of widespread diseases such as hypertension, asthma or Parkinson.

Time - Scientists - GPCRs - Sit - Cell

For a long time, scientists were convinced that GPCRs sit at the cell surface and only from there influence the activity of the cell via activation of various intracellular signalling cascades. This belief has been shaken by a series of recent studies. These studies suggest that GPCRs are also active in the cell interior. Researchers led by Professor Davide Calebiro of the Institute of Pharmacology and Toxicology and the Bio-Imaging Center of the University of Würzburg have now provided important support to this theory. The results of their work are presented in the current issue of the journal Nature Communications.

In simplified terms, G-protein-coupled receptors sit at the cell membrane waiting for a hormone or neurotransmitter to bind and thereby activate them. The signal is then transmitted inside the cell, mainly through the production of an intracellular second messenger such as cyclic adenosine monophosphate (short cAMP). This second messenger, in turn, is involved in the regulation of a large number of cell functions, such as gene transcription and cell division.

Indication - GPCRs - Production - CAMP - Cell

"The first indication that GPCRs also initiate the production of cAMP in the cell interior came from two studies of typical protein hormone receptors," says Davide Calebiro. He and his team were responsible for one of these studies; they...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Keep the change!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!