Scientists create a nano-trampoline to probe quantum behavior

phys.org | 2/22/2017 | Staff
yana.booyana.boo (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/58ad587b97dc3.jpg

A research group from Bar-Ilan University, in collaboration with French colleagues at CNRS Grenoble, has developed a unique experiment to detect quantum events in ultra-thin films. This novel research, to be published in the scientific journal Nature Communications, enhances the understanding of basic phenomena that occur in nano-sized systems close to absolute zero temperature.

A phase transition is a general term for physical phenomena wherein a system transits from one state to another as a result of changing the temperature. Everyday examples are the transition from ice to water (solid to liquid) at zero degrees centigrade, and from water to vapor (liquid to gas) at 100 degrees.

Temperature - Transition - Place - Point - Point

The temperature at which transition takes place is called the critical point. Near this point interesting physical phenomena occur. For example, as water is heated, small gas regions start forming and the water bubbles. As the temperature of the liquid is raised towards the critical point the size of the gas bubbles grows. As the size of the bubble becomes comparable to the wavelength of light, the light is scattered and causes the normally transparent liquid to appear "milky" - a phenomenon known as critical opalescence.

In recent years the scientific community has shown growing interest in quantum phase transitions in which a system transits between two states at absolute zero temperature (-273 degrees) as a result of manipulating a physical parameter such as magnetic field, pressure or chemical composition instead of temperature. In these transitions the change occurs not due the thermal energy provided to the system by heating but rather by quantum fluctuations. Although absolute zero is not physically attainable, characteristics of the transition can be detected in the system's very low-temperature behavior near the quantum critical point. Such characteristics include "quantum bubbles" of one phase in the other. The size and lifetime of...
(Excerpt) Read more at: phys.org
0 other people are viewing this story
Wake Up To Breaking News!
Government, where everything works great, until something has to work.
Sign In or Register to comment.