A new platform to study graphene's electronic properties

phys.org | 2/13/2017 | Staff
DebraS (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/anewplatform.jpg

Graphene's unusual electronic structure enables this extraordinary material to break many records of strength, electricity and heat conduction. Physicists at the Center for Theoretical Physics of Complex Systems (PCS), in collaboration with the Research Institute for Standards and Science (KRISS), used a model to explain the electronic structure of graphene measured by a new spectroscopic platform. These techniques, published in the journal Nano Letters, could promote future research on stable and accurate quantum measurements for new 2-D electronics.

Recently, interest in 2-D materials has risen exponentially in both academia and industry. These materials are made by extremely thin sheets, which have different physical properties compared to conventional 3-D materials. Moreover, when different 2-D sheets are stacked on the top of each other, new electrical, optical, and thermal properties emerge. One of the most promising and much studied 2-D materials is graphene: a single sheet of carbon atoms. In order to study the electronic properties of both single and double layer graphene, the team constructed a nanodevice with graphene sandwiched between two layers of an insulating material known as hexagonal boron nitride (hBN). On top of this device they placed graphite as electrode. Graphite is essentially made up of hundreds of thousands of layers of graphene. The bottom layer consisted of one layer of silicon and one of silica.

Voltages - Graphite - Silicon - Scientists - Changes

By tuning the voltages applied via the graphite and the silicon, the scientists measured the changes in the conductance of graphene, which reflects its electronic properties. The electrons of graphene have a particular energy structure, represented by the so-called Dirac cone, which is actually made by two cones that look like a sandglass, with only an infinitesimally small point in between (Dirac Point). You can think of it as an unusual cocktail glass shaped liked a sandglass, where the drink plays the function of...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!