'Reverse fuel cell' converts waste carbon to valuable products at record rates

ScienceDaily | 2/10/2020 | Staff
"For decades, talented researchers have been developing systems that convert electricity into hydrogen and back again," says Professor Ted Sargent, one of the senior authors of the paper published in Science. "Our innovation builds on that legacy, but by using carbon-based molecules, we can plug directly into existing hydrocarbon infrastructure."

In a hydrogen fuel cell, hydrogen and oxygen come together on the surface of a catalyst. The chemical reaction releases electrons, which are captured by specialized materials within the fuel cell and pumped into a circuit.

Opposite - Fuel - Cell - Electolyzer - Electricity

The opposite of a fuel cell is an electolyzer, which uses electricity to drive a chemical reaction. The paper's authors are experts in designing electrolyzers that convert CO2 into other carbon-based molecules, such as ethylene. The team includes PhD candidate Adnan Ozden, who is supervised by Professor David Sinton, as well as several members of Sargent's team, including PhD candidate Joshua Wicks, postdoctoral fellow F. Pelayo García de Arquer and former postdoctoral fellow Cao-Thang Dinh.

"Ethylene is one of the most widely produced chemicals in the world," says Wicks. "It's used to make everything from antifreeze to lawn furniture. Today it is derived from fossil fuels, but if we could instead make it by upgrading waste CO2, it would provide a new economic incentive for capturing carbon."

Today - Electrolyzers - Ethylene - Fuels - Part

Today's electrolyzers do not yet produce ethylene on a scale large enough to compete with what is derived from fossil fuels. Part of the challenge lies in the unique nature of the chemical reaction that transforms CO2 into ethylene and other carbon-based molecules.

"The reaction requires three things: CO2, which is a gas; hydrogen ions, which come from liquid water; and electrons, which are transmitted through a metal catalyst," says Ozden. "Bringing those three different phases -- especially the CO2 -- together quickly is challenging, and that is what has limited the...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!