Microscopy technique reveals cells' 3-D ultrastructure in new detail

phys.org | 1/16/2020 | Staff
Click For Photo: https://scx2.b-cdn.net/gfx/news/2020/5e205dd8db6f6.jpg

Inside a cell, tentacled vesicles shuttle cargo for sorting. DNA rearranges in the nucleus as stem cells differentiate into neurons. Neighboring neurons cling to one another through a web-like interface. And a new microscopy technique shows it all, in exquisite detail.

The technique, called cryo-SR/EM, melds images captured from electron microscopes and super-resolution light microscopes, resulting in brilliant, clear detailed views of the inside of cells—in 3-D.

Years - Scientists - Microscopic - World - Cells

For years, scientists have probed the microscopic world inside cells, developing new tools to view these basic units of life. But each tool comes with a tradeoff. Light microscopy makes it simple to identify specific cellular structures by tagging them with easy-to-see fluorescent molecules. With the development of super-resolution (SR) fluorescence microscopy, these structures can be viewed with even greater clarity. But fluorescence can reveal only a few of the more than 10,000 proteins in a cell at a given time, making it difficult to understand how these few relate to everything else. Electron microscopy (EM), on the other hand, reveals all cellular structures in high-resolution pictures—but delineating one feature from all others by EM alone can be difficult because the space inside of cells is so crowded.

Combining the two techniques gives scientists a clear picture of how specific cellular features relate to their surroundings, says Harald Hess, a senior group leader at the Howard Hughes Medical Institute's Janelia Research Campus. "This is a very powerful method."

Janelia - Research - Scientist - David - Hoffman

Janelia Research Scientist David Hoffman and Senior Scientist Gleb Shtengel spearheaded the project under the leadership of Hess and Janelia senior fellow Eric Betzig, an HHMI Investigator at the University of California, Berkeley. The work is described January 16, 2020 in the journal Science.

First, the scientists freeze cells under high pressure. That halts the cells' activity quickly and prevents the formation of ice crystals that can damage cells and...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
May you always have love to share, health to spare, and friends that care
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!