Solving complex problems at the speed of light

phys.org | 10/29/2019 | Staff
chrismpottschrismpotts (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/2020/solvingcompl.jpg

Many of the most challenging optimization problems encountered in various disciplines of science and engineering, from biology and drug discovery to routing and scheduling can be reduced to NP-complete problems. Intuitively speaking, NP-complete problems are "hard to solve" because the number of operations that must be performed in order to find the solution grows exponentially with the problem size. The ubiquity of NP-complete problems has led to the development of dedicated hardware (such as optical annealing and quantum annealing machines like "D-Wave") and special algorithms (heuristic algorithms like simulated annealing).

Recently, there has been a growing interest in solving these hard combinatorial problems by designing optical machines. These optical machines consist of a set of optical transformations imparted to an optical signal, so that the optical signal will encode the solution to the problem after some amount of computation. Such machines could benefit from the fundamental advantages of optical hardware integrated into silicon photonics, such as low-loss, parallel processing, optical passivity at low optical powers and robust scalability enabled by the development of fabrication processes by the industry. However, the development of compact and fast photonic hardware with dedicated algorithms which optimally utilize the capability of this hardware, has been lacking.

Today - Path - Problems - Photonics - Work

Today, the path to solving NP-complete problems with integrated photonics is open due to the work of Charles Roques-Carmes, Dr. Yichen Shen, Cristian Zanoci, Mihika Prabhu, Fadi Atieh, Dr. Li Jing, Dr. Tena Dubček, Chenkai Mao, Miles Johnson, Prof. Vladimir Čeperić, Prof. Dirk Englund, Prof. John Joannopoulos, and Prof. Marin Soljačić from MIT and the Institute for Soldier Nanotechnologies, published in Nature Communications. In this work, the MIT team developed an algorithm dedicated to solving the well-known NP-complete Ising problem with photonics hardware.

Originally proposed to model magnetic systems, the Ising model describes a network of spins that can point only up...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sometimes I Wake Up Grumpy. Other Times I Let Her Sleep
Tagged:
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!