Physicists find ways to overcome signal loss in magnonic circuits

phys.org | 11/21/2018 | Staff
bab_ohhbab_ohh (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/hires/2019/2-miptphysicis.jpg

Researchers from the Moscow Institute of Physics and Technology, Kotelnikov Institute of Radio Engineering and Electronics, and N.G. Chernyshevsky Saratov State University have demonstrated that the coupling elements in magnonic logic circuits are so crucial that a poorly selected waveguide can lead to signal loss. The physicists developed a parametric model for predicting the waveguide configuration that avoids signal loss, built a prototype waveguide, and tested the model in an experiment. Their paper was published in the Journal of Applied Physics.

The underlying goal of the research on magnonic logic is creating alternative circuit elements compatible with the existing electronics. This means developing completely new elements, including faster signal processors with low power consumption, that could be incorporated into present-day electronics.

Devices - Components - Circuits - Waveguides - Wires

In designing new devices, various components are integrated with each other. However, magnonic circuits rely on magnetic waveguides rather than wires for this. Researchers previously conjectured that waveguides could have an adverse effect on signal intensity in transmission from one component to another.

The recent study by the Russian physicists has shown the waveguides to have a greater effect than anticipated. In fact, it turns out that a poorly chosen waveguide geometry can result in complete signal loss. The reason for this is spin wave interference. Waveguides are extremely miniature components, measuring hundredths of a micrometer, and on this scale, the lateral quantization of the signal needs to be...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
"Those who stand for nothing fall for anything." - Alexander Hamilton
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!