Better estimating snowfall depth remotely

phys.org | 9/3/2019 | Staff
Refel_4309Refel_4309 (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/2019/betterestima.jpg

Precipitation that falls on the ground in liquid form can be measured with relatively high accuracy. As soon as it turns to snowfall, however, various difficulties arise. For mountain regions, the amount of snow is an important piece of information. It serves to estimate the danger of avalanches, to plan road clearance or to determine meltwater quantities that have a major influence on hydro-electric power generation. Determining snow quantities involves a variety of measures such as manual measurements by human snow observers or fully automated measuring stations, and each of these comes with different benefits and disadvantages. In areas exposed to strong winds, automated measurements of precipitation and snow depth are sometimes unreliable. Manual measurements are usually performed only once a day. The Austrian Central Institute for Meteorology and Geodynamics (ZAMG) operates automated snow depth measurement stations throughout Austria.

In recent years, these stations have been supplemented by optical snow sensors involving laser technology that can measure the snow depth every ten minutes. Combining the precipitation measurement data with weather radar measurements makes it possible to determine the total amount of precipitation in a given region. Nonetheless, the results tend to be inaccurate, especially in winter. With the help of funding from the Gottfried and Vera Weiss Science Foundation, which is administered by the Austrian Science Fund FWF, the Innsbruck-based hydrologist and meteorologist Kay Helfricht has now analyzed the data from laser measuring stations for snow depth in order to detect and correct errors.

Amount - Precipitation - Case - Snowfall - Investigator

"We know that the actual amount of precipitation is generally underestimated in the case of snowfall," explains principal investigator Helfricht. "For this reason, correction factors are used on the measured value in standard products for determining the distribution of precipitation." The error occurs, for example, when the snow evaporates on the heated measuring device or drifts away because...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Tagged:
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!