Protein antibiotics offer new hope for fighting common crop diseases

phys.org | 10/23/2019 | Staff
bluelillybluelilly (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/hires/2019/proteinantib.jpg

Scientists have tested a new way to protect crops from a widespread and devastating bacterial disease, without using environmentally damaging chemical sprays.

An interdisciplinary team at the University of Glasgow have revealed a new method that could protect many important crop species against the common crop bacteria Pseudomonas syringae (Ps).

Ps - Species - Variety - Crops - UK

Ps and related bacterial species attack a wide variety of important crops in the UK and worldwide, including tomato, kiwifruit, peppers, olive, soybean and fruit trees, causing huge economic losses. Plant diseases are responsible for the loss of about 15% of world crops (worth $150 bn annually), of which a third is caused by bacteria such as Ps. The Ps species complex consists of over 50 known variants, which are responsible for diseases like blight, spot and bacterial speck. Once the bacteria infect part of a crop, the disease can spread rapidly because of the lack of genetic diversity in commercial crop varieties.

Using genetic modification, the team were able to make plants express a targeted protein antibiotic, or bacteriocin. These plants then successfully fought off the bacterial infection without any damage to the plants themselves or the surrounding environment. The team, from the labs of Dr. Joel Milner of the Plant Science Group and Professor Daniel Walker from Bacteriology, are presenting their findings today in the Plant Biotechnology Journal.

Chemicals - Antibiotics - Resistance - Genes - Plant

Currently, chemicals, conventional antibiotics and resistance genes introduced by plant breeding are used to protect plants against these bacteria, but they have limited success and often have adverse environmental impacts. With increased regulatory pressure on the use of chemical treatments and the risk of spreading resistance associated with conventional antibiotics, there is a pressing need to develop alternative strategies to...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!