Go with the flow: Scientists design new grid batteries for renewable energy

ScienceDaily | 11/7/2019 | Staff
chicana948 (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2019/11/191107093930_1_540x360.jpg

Now, a battery membrane technology developed by researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) may point to a solution.

As reported in the journal of Joule, the researchers developed a versatile yet affordable battery membrane -- from a class of polymers known as AquaPIMs. This class of polymers makes long-lasting and low-cost grid batteries possible based solely on readily available materials such as zinc, iron, and water. The team also developed a simple model showing how different battery membranes impact the lifetime of the battery, which is expected to accelerate early stage R&D for flow-battery technologies, particularly in the search for a suitable membrane for different battery chemistries.

AquaPIM - Membrane - Technology - Path - Market

"Our AquaPIM membrane technology is well-positioned to accelerate the path to market for flow batteries that use scalable, low-cost, water-based chemistries," said Brett Helms, a principal investigator in the Joint Center for Energy Storage Research (JCESR) and staff scientist at Berkeley Lab's Molecular Foundry who led the study. "By using our technology and accompanying empirical models for battery performance and lifetime, other researchers will be able to quickly evaluate the readiness of each component that goes into the battery, from the membrane to the charge-storing materials. This should save time and resources for researchers and product developers alike."

Fluorinated polymer membranes are also expensive. According to Helms, they can make up 15% to 20% of the battery's cost, which can run in the range of $300/kWh.

Way - Cost - Batteries - Polymer - Membranes

One way to drive down the cost of flow batteries is to eliminate the fluorinated polymer membranes altogether and come up with a high-performing yet cheaper alternative such as AquaPIMs, said Miranda Baran, a graduate student researcher in Helms' research group and the study's lead author. Baran is also a Ph.D. student in the Department of Chemistry at UC Berkeley.

Helms and co-authors discovered the...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!