Mimicking body's circulatory AC could keep airplanes, cars and computers cooler

ScienceDaily | 10/31/2019 | Staff
erinmmarionerinmmarion (Posted by) Level 3
In a study published in the International Journal of Heat and Mass Transfer, Ahmad Najafi, PhD, a professor in Drexel's College of Engineering, and his faculty collaborator, Jason Patrick, PhD, from North Carolina State University, report on how a computational technique they developed can quickly produce designs for 3D printing carbon-fiber composite materials with an internal vasculature optimized for active-cooling.

"When you get hot, the body sends a signal to the circulatory system to pump more blood to the surface of the skin -- this is why we sometimes get red in the face" Najafi said. "This is a natural method for dissipating heat that works so well, scientists and engineers have been trying for years to replicate in mechanical cooling systems, like the ones that keep cars and computers from overheating."

Najafi - Patrick - Paper - Platform - Composites

Najafi and Patrick's latest paper describes an integrated platform to design and create bioinspired microvascular composites that can do just that.

In minutes, their computer program, coined HyTopS, which is short for hybrid topology/shape optimization, can produce a schematic for a vascular network with the ideal shape, size and distribution of micro-vessels to actively cool a material via liquid circulation -- a trick that took Mother Nature more than a few evolutionary cycles to perfect.

Fiber-composites - Everything - Vehicles - Generation - Aircraft

Microvascular fiber-composites are currently being developed to cool everything from electric vehicles to next generation aircraft, where increasingly higher performance is turning up the heat they generate.

"These modern materials could revolutionize everything from hypersonic space vehicles to battery packaging in electric cars and even supercomputer cooling systems. As things move faster, and energy output and computing power continue to increase, an enormous amount of heat is generated that requires new approaches to cooling," Patrick said. "Inspired by circulatory systems in living organisms, internal micro-vasculature provides an effective means to thermal regulation in synthetic materials."

Branch

This branch of bioinspired-based...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
"It is useless to attempt to reason a man out of a thing he was never reasoned into"--Jonathan Swift
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!