Physicists discover topological behavior of electrons in 3D magnetic material

ScienceDaily | 9/19/2019 | Staff
InLove4567InLove4567 (Posted by) Level 3
The key to this behavior is topology -- a branch of mathematics that is already known to play a powerful role in dictating the behavior of electrons in crystals. Topological materials can contain massless particles in the form of light, or photons. In a topological crystal, the electrons often behave like slowed-down light yet, unlike light, carry electrical charge.

Topology has seldom been observed in magnetic materials, and the finding of a magnetic topological material at room temperature is a step forward that could unlock new approaches to harnessing topological materials for future technological applications.

Work - Evidence - Properties - Magnets - Dimensions

"Before this work, evidence for the topological properties of magnets in three dimensions was inconclusive. These new results give us direct and decisive evidence for this phenomenon at the microscopic level," said M. Zahid Hasan, the Eugene Higgins Professor of Physics at Princeton, who led the research. "This work opens up a new continent for exploration in topological magnets."

Hasan and his team spent more than a decade studying candidate materials in the search for a topological magnetic quantum state.

Physics - Bulk - Magnets - Decades - Question

"The physics of bulk magnets has been understood for many decades. A natural question for us is: Can magnetic and topological properties together produce something new in three dimensions?" Hasan said.

Thousands of magnetic materials exist, but most did not have the correct properties, the researchers found. The magnets were too difficult to synthesize, the magnetism was not sufficiently well understood, the magnetic structure was too complicated to model theoretically, or no decisive experimental signatures of the topology could be observed.

Turning - Point

Then came a lucky turning point.

"After studying many magnetic materials, we performed a measurement on a class of room-temperature magnets and unexpectedly saw signatures of massless electrons," said Ilya Belopolski, a postdoctoral researcher in Hasan's laboratory and co-first author of the study. "That set us on the path to the...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!