Making biominerals: Nature's recipe is old, evolved more than once

phys.org | 8/19/2019 | Staff
jenny1246 (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/2019/makingbiomin.jpg

In recent years, scientists have teased out many of the secrets of biomineralization, the process by which sea urchins grow spines, mollusks build their shells and corals make their skeletons, not to mention how mammals and other animals make bones and teeth.

The materials that animals make from scratch to build protective shells, razor sharp teeth, load-bearing bones and needlelike spines are some of the hardest and most durable substances known. The recipe for making those materials was one of nature's closely held secrets, but powerful new analytical tools and microscopes have peeled back much of the mystery, showing, at the nanoscale, exactly how a wide array of animals use precisely the same mechanisms and starter chemicals to make the biomineral structures they depend on.

Report - Today - Aug - Proceedings - National

Now, in a report published today (Aug. 19, 2019) in the Proceedings of the National Academy of Sciences (PNAS), a team led by Pupa Gilbert, a University of Wisconsin–Madison professor of physics, shows that the recipe for making shells, spines, and coral skeletons is not only the same across many modern animal lineages, but is ancient—dating back 550 million years—and evolved independently more than once.

The findings are important because they help stitch together an evolutionary narrative of biomineralization. The fuller picture of a process ubiquitous to animal life on our planet not only tells us something important about our world, but the details may one day be harnessed by humans to produce harder, lighter, more durable materials; tools that never need sharpening; more faithful biomedical implants; and the possibility of human intervention in things like rebuilding the world's coral reefs.

Finding - Biomineralization - Times - Mechanism - Physical

"The finding that biomineralization evolved independently multiple times, using the same mechanism, tells us that there is a strong physical or chemical reason for doing so," says Gilbert, a world expert on the process of biomineralization. "If one...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!