Researchers identify prime compound candidates for new room temperature semiconductor radiation detectors | 4/25/2018 | Staff
MireilleMireille (Posted by) Level 3
Click For Photo:

Nuclear power plants can withstand most inclement weather and do not emit harmful greenhouse gases. However, trafficking of the nuclear materials to furnish them with fuel remains a serious issue as security technology continues to be developed.

Two physicists working out of the University of Florida and Pacific Northwest National Laboratory, Paul Johns and Juan Nino, conducted research to enhance global nuclear security by improving radiation detectors. According to them, improving radiation detectors requires the identification of better sensor materials and the development of smarter algorithms to process detector signals. They discuss their work in this week's Journal of Applied Physics.

End - Users - Radiation - Detectors - Background

"The end users of radiation detectors don't necessarily have a background in physics that allows them to make decisions based on the signals that come in," Johns said. "The algorithms used to energy-stabilize and identify radioactive isotopes from a gamma ray spectrum are therefore key to making detectors useful and reliable. When sensors can provide better signal resolution, algorithms are able to more accurately inform users about the radiation sources in their environment."

Currently, no single radiation detector is perfect for every application. With size, signal resolution, weight, and cost all being factors, designing the ideal detector has proved to be a major challenge.

Johns - Nino - List - Compounds - Room

Johns and Nino examined a list of potential compounds for room temperature semiconductor detectors,...
(Excerpt) Read more at:
Wake Up To Breaking News!
There's no problem on the inside of a kid that the outside of a dog can't cure.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!