Expert mathematicians stumped by simple subtractions

phys.org | 5/16/2019 | Staff
PaMe (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/mathematics.jpg

Mathematical thought is seen as the pinnacle of abstract thinking. But are we capable of filtering out our knowledge about the world to prevent it from interfering with our calculations? Researchers from the University of Geneva (UNIGE), Switzerland, and the University of Bourgogne Franche-Comté, France, have demonstrated that our ability to solve mathematical problems is influenced by non-mathematical knowledge, which often results in mistakes. The findings, published in Psychonomic Bulletin & Review, indicate that high-level mathematicians can be duped by some aspects of their knowledge about the world and fail to solve primary school-level subtraction problems. It follows that this bias needs to be factored into the way mathematics is taught.

Maths teaching at school usually draws on examples taken from everyday life. Whether it's adding up oranges and apples to make a pie or dividing a bunch of tulips by the number of vases for a floral arrangement, we master mathematics with the help of concrete examples. But to what extent do the examples chosen affect a child's ability to use the mathematical concepts in new contexts?

Researchers - UNIGE - University - Bourgogne - Franche-Comté

Researchers from UNIGE and the University of Bourgogne Franche-Comté tested the degree to which our worldly knowledge interferes with mathematical reasoning by presenting 12 problems to two distinct groups. The first group consisted of adults who had taken a standard university course, while the second was composed of high-level mathematicians. "We speculated that the adults and mathematicians alike would rely on their knowledge about the world, even when it would lead them to make mistakes," explains Hippolyte Gros, a researcher in UNIGE's Faculty of Psychology and Educational Sciences (FPSE).

When faced with numbers, we tend to represent them mentally either as sets or as values on axes. "We devised six fifth-grade subtraction problems (i.e. for pupils aged 10 to 11) that could be represented by...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!