Scientists discover how to 'lock' heat in place using quantum mechanics

phys.org | 7/3/2019 | Staff
ali11 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/5d25c8a2305ba.jpg

A ground-breaking study conducted by researchers from the National University of Singapore (NUS) has revealed a method of using quantum mechanical wave theories to "lock" heat into a fixed position.

Ordinarily, a source of heat diffuses through a conductive material until it dissipates, but Associate Professor Cheng-Wei Qiu from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering and his team used the principle of anti-parity-time (APT) symmetry to show that it is possible to confine the heat to a small region of a metal ring without it spreading over time.

Future - Phenomenon - Heat - Diffusion - Ways

In the future, this newly demonstrated phenomenon could be used to control heat diffusion in sophisticated ways and optimize efficacy in systems that need cooling. The results of the study were published on 12 April 2019 in the journal Science.

"Imagine a droplet of ink in a flowing stream. After a short amount of time you would see the ink spread and flow in the direction of the current. Now imagine if that ink droplet stayed the same size and in the same position as the water flowed around it. Effectively that is what we have accomplished with the spread of heat in our experiment," explained Assoc Prof Qiu.

Setup - Study - Metal - Rings - Layer

The experimental setup of this study is two oppositely rotating metal rings, sandwiched together with a thin layer of grease. The rotating motion of the rings act like the flow of the stream in the scenario. When heat is injected at a point in the system, the thermal energy is able to stay in position because one rotating ring is coupled to the counter-rotating ring by the principles of APT symmetry.

The conditions of this experiment are quite precise in order for it to be successful. "From quantum mechanical theory, you can calculate the velocity needed for the rings. Too slow...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!