Building a bridge to the quantum world

ScienceDaily | 6/26/2019 | Staff
AavyAavy (Posted by) Level 4
Entanglement is a phenomenon typical of the quantum world, which is not present in the so-called classical world -- the world and laws of physics that govern our everyday lives. When two particles are entangled, the characteristics of one particle can be determined by looking at the other. This was discovered by Einstein, and the phenomenon is now actively used in quantum cryptography where it is said to lead to unbreakable codes. But it not only just affects particles, radiation can also be entangled: This is the phenomenon that Shabir Barzanjeh, a postdoc in the group of Professor Fink at IST Austria and first author of the study, is currently researching.

"Imagine a box with two exits. If the exits are entangled, one can characterize the radiation coming out of one exit by looking at the other," he explains. Entangled radiation has been created before, but in this study a mechanical object was used for the first time. With a length of 30 micrometers and composed of about a trillion (1012) atoms the silicon beam created by the group might still be small in our eyes but, for the quantum world, however, it is large. "For me, this experiment was interesting on a fundamental level," says Barzanjeh. "The question was: can one use such a large system to produce non-classical radiation? Now we know that the answer is: yes."

Device - Value - Oscillators - Link - Quantum

But the device also has practical value. Mechanical oscillators could serve as a link between the extremely sensitive quantum computers and optical fibers connecting them inside data centers and beyond. "What we have built is a prototype for a quantum link," says Barzanjeh.

In superconducting quantum computers, the electronics only work at extremely low temperatures which are only a few thousandths of a degree above...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
What's more plentiful, hydrogen or stupidity?
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!