Laboratory experiments show that semiconductor nanowires can be tuned over wide energy ranges

phys.org | 5/28/2019 | Staff
KHALED (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/shellincreas.jpg

Nanowires promise to make LEDs more colorful and solar cells more efficient, in addition to speeding up computers. That is, provided that the tiny semiconductors convert electric energy into light, and vice versa, at the right wavelengths. A research team at the German Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has managed to produce nanowires with operating wavelengths that can be freely selected over a wide range—simply by altering the shell structure. Fine-tuned nanowires could take on several roles in an optoelectronic component. That would make the components more powerful, more cost-effective, and easier to integrate, as the team reports in Nature Communications.

Nanowires are extremely versatile. The tiny elements can be used for miniaturized photonic and electronic components in nanotechnology. Applications include optical circuits on chips, novel sensors, LEDs, solar cells and innovative quantum technologies. It is the free-standing nanowires that ensure the compatibility of more recent semiconductor technologies with conventional silicon-based technologies. Since contact to the silicon substrate is tiny, they surmount typical difficulties in combining different materials.

Study - Years - Dresden - Researchers - Nanowires

For their study, which lasted several years, the Dresden researchers first set about growing nanowires from the semiconductor material gallium arsenide on silicon substrates. The next step involved enclosing the wafer-thin wires in another layer of material to which they added indium as an additional element. Their goal: the mismatched crystal structure of the materials was intended to induce a mechanical strain in the wire core, which changes the electronic properties of gallium arsenide. For instance, the semiconductor bandgap becomes smaller and the electrons become more mobile. To magnify this effect, the scientists kept adding more indium to the shell, or increased the shell's thickness. The result went way beyond expectations.

"What we did was take a known effect to extremes," explained Emmanouil Dimakis, leader of the study that involved researchers from HZDR, TU Dresden and DESY...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Tyranny has such cute names, like Democrat, Republican, Congress, Senate...
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!