Perfect quantum portal emerges at exotic interface

phys.org | 6/20/2019 | Staff
camkizzle (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/perfectquant.jpg

Researchers at the University of Maryland have captured the most direct evidence to date of a quantum quirk that allows particles to tunnel through a barrier like it's not even there. The result, featured on the cover of the June 20, 2019 issue of the journal Nature, may enable engineers to design more uniform components for future quantum computers, quantum sensors and other devices.

The new experiment is an observation of Klein tunneling, a special case of a more ordinary quantum phenomenon. In the quantum world, tunneling allows particles like electrons to pass through a barrier even if they don't have enough energy to actually climb over it. A taller barrier usually makes this harder and lets fewer particles through.

Klein - Barrier - Portal - Particles - Barrier

Klein tunneling occurs when the barrier becomes completely transparent, opening up a portal that particles can traverse regardless of the barrier's height. Scientists and engineers from UMD's Center for Nanophysics and Advanced Materials (CNAM), the Joint Quantum Institute (JQI) and the Condensed Matter Theory Center (CMTC), with appointments in UMD's Department of Materials Science and Engineering and Department of Physics, have made the most compelling measurements yet of the effect.

"Klein tunneling was originally a relativistic effect, first predicted almost a hundred years ago," says Ichiro Takeuchi, a professor of materials science and engineering (MSE) at UMD and the senior author of the new study. "Until recently, though, you could not observe it."

Evidence - Klein - World - Quantum - Particles

It was nearly impossible to collect evidence for Klein tunneling where it was first predicted—the world of high-energy quantum particles moving close to the speed of light. But in the past several decades, scientists have discovered that some of the rules governing fast-moving quantum particles also apply to the comparatively sluggish particles traveling near the surface of some unusual materials.

One such material—which researchers used in the new study—is samarium hexaboride (SmB6),...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
It had only one fault, it was useless.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!