Infrared frequency comb measures biological signatures

ScienceDaily | 6/7/2019 | Staff
darktm22darktm22 (Posted by) Level 4
The NIST setup, which occupies just a few square feet of table space, has potential applications such as disease diagnosis, identification of chemicals used in manufacturing, and biomass energy harvesting. The work is described in the June 7 issue of Science Advances.

Optical frequency combs measure exact frequencies, or colors, of light. Various comb designs have enabled the development of next-generation atomic clocks and show promise for environmental applications such as detecting methane leaks. Biological applications have been slower to develop, in part because it's been hard to directly generate and measure the relevant infrared light.

Applications - NIST - Team - Apparatus - Fingerprints

To showcase biological applications, the NIST team used the new apparatus to detect "fingerprints" of NIST's monoclonal antibody reference material, a protein made of more than 20,000 atoms that is used by the biopharmaceutical industry to ensure the quality of treatments.

"For the first time our frequency combs have simultaneous coverage across the entire infrared molecular fingerprint region," project leader Scott Diddams said. "Other key advantages are speed, resolution and dynamic range in acquiring data."

Light - Research - Probe - Molecules - Frequencies

Mid-infrared light is an especially useful research probe because molecules usually rotate and vibrate at these frequencies. But until now it's been difficult to probe this region due to a lack of broadband or tunable light sources and efficient detectors such as those available for visible and near-infrared light, the part of the infrared spectrum closest to visible light.

The new NIST apparatus overcomes these problems. Simple fiber lasers generate light spanning the entire range used to identify molecules -- that is, mid-infrared to far-infrared wavelengths of 3-27 micrometers (frequencies of approximately 10-100 terahertz). The amounts...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
It's a fight to the death, which you will eventually lose...
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!