Recreating embryonic conditions at break sites can help bones heal faster

ScienceDaily | 6/5/2019 | Staff
shellshockkedshellshockked (Posted by) Level 3
The technique allows the stem cells applied to break sites to experience some mechanical stress, as they do in developing embryos. These forces may help encourage stem cells to differentiate into cartilage and bone, as well as encourage other cells in the bone to regenerate.

Their findings are reported in the journal Science Translational Medicine.

Stem - Cells - Cues - Cells - Tissues

Stem cells need environmental cues to differentiate into cells that make up unique tissues. Stem cells that give rise to bone and cartilage are subject to mechanical forces during development and healing, explained Eben Alsberg, the Richard and Loan Hill Professor of Bioengineering and Orthopaedics at the University of Illinois at Chicago and a senior author on the paper.

When a bone heals, stem cells in the marrow near the break site first become cartilage cells and later bone cells -- ultimately knitting together the break. When there are large gaps between broken or deformed bones, applying additional stem cells to break sites can help bones heal faster by either actively participating in the regenerative process or stimulating bone formation by neighboring cells.

Stem - Cells - Bone - Regeneration - Site

But to use stem cells for bone regeneration, they need to be delivered to the defect site and differentiate appropriately to stimulate repair.

Alsberg and colleagues developed a unique preparation of the cells that can be handled and manipulated easily for implantation and that supports the cellular differentiation events that occur in embryonic bone development.

Alsberg - Preparation - Stem - Cells - Sheets

In Alsberg's preparation, stem cells are cultured so that they link to each other to form either sheets or plugs. The preparation also contains gelatin microparticles loaded with growth factors that help the stem cells differentiate. These sheets or plugs can be manipulated and implanted and reduce the tendency for cells to drift away. Alsberg calls these materials "condensates."

In previous studies, Alsberg and colleagues used condensates in a rodent model to help heal...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Individuals can exist without government but government can't exist without individuals.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!