Researchers develop superconducting quantum refrigerator | 10/18/2018 | Staff
srqlolo (Posted by) Level 3
Click For Photo:

Imagine a refrigerator so cold it could turn atoms into their quantum states, giving them unique properties that defy the rules of classical physics.

In a paper published in Physical Review Applied, Andrew Jordan, professor of physics at the University of Rochester, and his graduate student Sreenath Manikandan, along with their colleague Francesco Giazotto from the NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore in Italy, have conceived an idea for such a refrigerator, which would cool atoms to nearly absolute zero temperatures (about minus 459 degrees Fahrenheit). Scientists could use the refrigerator, which is based on the quantum property of superconductivity, to facilitate and enhance the performance of quantum sensors or circuits for ultrafast quantum computers.


What Is Superconductivity?

How well a material conducts electricity is known as conductivity. When a material has high conductivity, it readily allows an electric current to flow through it. Metals, for instance, are good conductors, while wood, or the shielding wrapped around metal wires, are insulators. But, while metal wires are good conductors, they still encounter resistance due to friction.

Ideal - Scenario - Material - Electricity - Resistance

In an ideal scenario, a material would conduct electricity without encountering resistance; that is, it would carry a current indefinitely without losing any energy. This is precisely what happens with a superconductor.

"When you cool down a system to extreme temperatures, the electrons enter a quantum state where they behave more like a collective fluid that flows without resistance," Manikandan says. "This is achieved by electrons in a superconductor forming pairs, known as cooper pairs, at very low temperatures."

Researchers - Metals - Superconductors - Metal - Temperature

Researchers believe all metals can become superconductors if they are made cold enough, but each metal has a different "critical temperature" at which its resistance disappears.

"When you reach this magical temperature—and it's not a gradual thing, it's an abrupt thing—suddenly the resistance just drops like a rock to zero and there...
(Excerpt) Read more at:
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!