Origami-inspired materials could soften the blow for reusable spacecraft

phys.org | 4/17/2019 | Staff
maye (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/origamiinspi.jpg

Space vehicles like SpaceX's Falcon 9 are designed to be reusable. But this means that, like Olympic gymnasts hoping for a gold medal, they have to stick their landings.

Landing is stressful on a rocket's legs because they must handle the force from the impact with the landing pad. One way to combat this is to build legs out of materials that absorb some of the force and soften the blow.

University - Washington - Researchers - Solution - Impact

University of Washington researchers have developed a novel solution to help reduce impact forces—for potential applications in spacecraft, cars and beyond. Inspired by the paper folding art of origami, the team created a paper model of a metamaterial that uses "folding creases" to soften impact forces and instead promote forces that relax stresses in the chain. The team published its results May 24 in Science Advances.

"If you were wearing a football helmet made of this material and something hit the helmet, you'd never feel that hit on your head. By the time the energy reaches you, it's no longer pushing. It's pulling," said corresponding author Jinkyu Yang, a UW associate professor of aeronautics and astronautics.

Yang - Team - Metamaterial - Properties

Yang and his team designed this new metamaterial to have the properties they wanted.

"Metamaterials are like Legos. You can make all types of structures by repeating a single type of building block, or unit cell as we call it," he said. "Depending on how you design your unit cell, you can create a material with unique mechanical properties that are unprecedented in nature."

Researchers - Art - Origami - Unit - Cell

The researchers turned to the art of origami to create this particular unit cell.

"Origami is great for realizing the unit cell," said co-author Yasuhiro Miyazawa, a UW aeronautics and astronautics doctoral student. "By changing where we introduce creases into flat materials, we can design materials that exhibit different degrees...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!