Advanced civilizations could be communicating with neutrino beams

phys.org | 3/7/2019 | Staff
Pumpkinajn (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/advancedcivi.jpg




In 1960, famed theoretical physicist Freeman Dyson made a radical proposal. In a paper titled "Search for Artificial Stellar Sources of Infrared Radiation," he suggested that advanced extra-terrestrial intelligences (ETIs) could be found by looking for signs of artificial structures so large that they encompass entire star systems (also known as megastructures). Since then, many scientists have come up with their own ideas for possible megastructures.

Like Dyson's proposed sphere, these ideas were suggested as a way of giving scientists engaged in the search for extra-terrestrial intelligence (SETI) something to look for. Adding to this fascinating field, Dr. Albert Jackson of the Houston-based technology company Triton Systems recently released a study in which he proposed how an advanced ETI could rely on a neutron star or black hole to focus neutrino beams to create a beacon.

Briefly - Existence - Megastructures - Civilization - Kardashev

To summarize briefly, the existence of megastructures depends entirely on where an extra-terrestrial civilization would fit into the Kardashev Scale (i.e. if they are a planetary, stellar, or galactic civilization). In this case, Jackson suggests that a Type II civilization would be capable of enclosing a neutron star or black hole through the creation of a large constellation of neutrino-transmitting satellites.

Dr. Jackson begins his study with a quote from Freeman Dyson's 1966 essay, "The Search for Extraterrestrial Technology," in which he summarized his aims: "So the first rule of my game is: Think of the biggest possible artificial activities with limits set only by the laws of physics and look for those."

Study - Dr - Jackson - ETIs - Hole

In a previous study, Dr. Jackson suggested how advanced ETIs could use a small black hole as a gravitational lens to send gravitational wave signals across the galaxy. This concept builds upon recent work by other researchers who have suggested that gravitational waves (GWs), which have become the focus of considerable research since they were...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!