Giving robots a better feel for object manipulation

ScienceDaily | 4/17/2019 | Staff
bab_ohhbab_ohh (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2019/04/190417171040_1_540x360.jpg

In robotic planning, physical simulators are models that capture how different materials respond to force. Robots are "trained" using the models, to predict the outcomes of their interactions with objects, such as pushing a solid box or poking deformable clay. But traditional learning-based simulators mainly focus on rigid objects and are unable to handle fluids or softer objects. Some more accurate physics-based simulators can handle diverse materials, but rely heavily on approximation techniques that introduce errors when robots interact with objects in the real world.

In a paper being presented at the International Conference on Learning Representations in May, the researchers describe a new model that learns to capture how small portions of different materials -- "particles" -- interact when they're poked and prodded. The model directly learns from data in cases where the underlying physics of the movements are uncertain or unknown. Robots can then use the model as a guide to predict how liquids, as well as rigid and deformable materials, will react to the force of its touch. As the robot handles the objects, the model also helps to further refine the robot's control.

Experiments - Hand - Fingers - RiceGrip - Foam

In experiments, a robotic hand with two fingers, called "RiceGrip," accurately shaped a deformable foam to a desired configuration -- such as a "T" shape -- that serves as a proxy for sushi rice. In short, the researchers' model serves as a type of "intuitive physics" brain that robots can leverage to reconstruct three-dimensional objects somewhat similarly to how humans do.

"Humans have an intuitive physics model in our heads, where we can imagine how an object will behave if we push or squeeze it. Based on this intuitive model, humans can accomplish amazing manipulation tasks that are far beyond the reach of current robots," says first author Yunzhu Li, a graduate student in the Computer...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
"Those who stand for nothing fall for anything." - Alexander Hamilton
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!