The discrete-time physics hiding inside our continuous-time world

phys.org | 4/8/2019 | Staff
bethtetleybethtetley (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/thediscretet.jpg

Scientists believe that time is continuous, not discrete—roughly speaking, they believe that it does not progress in "chunks," but rather "flows," smoothly and continuously. So they often model the dynamics of physical systems as continuous-time "Markov processes," named after mathematician Andrey Markov. Indeed, scientists have used these processes to investigate a range of real-world processes from folding proteins, to evolving ecosystems, to shifting financial markets, with astonishing success.

However, invariably a scientist can only observe the state of a system at discrete times, separated by some gap, rather than continually. For example, a stock market analyst might repeatedly observe how the state of the market at the beginning of one day is related to the state of the market at the beginning of the next day, building up a conditional probability distribution of what the state of the second day is given the state at the first day.

Variables - Systems - Implicit - Tools - Scientists

"We're saying there are hidden variables in dynamic systems, implicit in the tools scientists are using to study such systems," says co-author David Wolpert (Santa Fe Institute). "In addition, in a certain very limited sense, we're saying that time proceeds in discrete timesteps, even if the scientist models time as though it proceeds continually. The scientists may not have been paying attention to those hidden variables and those hidden timesteps, but they are there, playing a key, behind-the-scenes role in many of the papers those scientists have read, and almost surely also in many of the papers those scientists have written."

In addition to discovering hidden states and time steps, the scientists also discovered a tradeoff between the two; the more hidden states there are, the smaller the minimal number of hidden timesteps that are required. According to co-author Artemy Kolchinsky (Santa Fe Institute), "these results surprisingly demonstrate that Markov processes exhibit a kind of...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Tagged:
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!