Research reveals evidence of climate change in the Yukon permafrost

phys.org | 4/2/2019 | Staff
megzmegz123 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/8-researchreve.jpg

A new University of Toronto study confirms that recent climate warming in the central Yukon region has surpassed the warmest temperatures experienced in the previous 13,600 years, a finding that could have important implications in the context of current global warming trends.

In a study published in the April issue of Nature Communications, paleoclimatologist and lead author Trevor Porter studies climate indicators such as water isotopes, tree rings and plant waxes for signs of climate patterns in the Holocene, a period of time that spans the past 11,700 years.

Regions - Research - Water - Isotopes - Ice

In glaciated regions, paleoclimate research often relies on water isotopes measured from ice core samples taken from glaciers, but in central Yukon, where glaciers have long since receded, researchers must rely on other indicators such as plant pollen and small winged insects known as midges preserved in layers of lake sediment. Pollen and midges act as proxies for ancient temperatures but sometimes offer conflicting information.

In a first for the field, Porter, an assistant professor in the department of geography at U of T Mississauga, and his colleagues used radiocarbon dating and water isotopes preserved in permafrost beneath a central Yukon peatland to reconstruct summer temperatures over the last 13,600 years.

Summer - Peat - Moss - Surface - Top

Each summer, new peat moss accumulates at the surface, and the top of permafrost, which lies at a constant depth of 58 centimetres below ground, adjusts to the new surface. It simultaneously preserves precipitation that filtered through the ground and froze at the top of permafrost during previous summers.

"Each centimetre of permafrost holds roughly 20 to 30 years of precipitation, which settles into well-blended layers of information," Porter says. "Water isotope records from ice cores are one of the most valued climate proxies but can only be developed in glaciated regions. This project demonstrates that we can develop ice core-like records in non-glaciated permafrost...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!