Researchers measure quantum behavior at room temperature, visible to the naked eye

phys.org | 3/25/2019 | Staff
Caris (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/listeningtot.jpg

Since the historic finding of gravitational waves from two black holes colliding over a billion light years away was made in 2015, physicists are advancing knowledge about the limits on the precision of the measurements that will help improve the next generation of tools and technology used by gravitational wave scientists.

Louisiana State University Department of Physics & Astronomy Associate Professor Thomas Corbitt and his team of researchers now present the first broadband, off-resonance measurement of quantum radiation pressure noise in the audio band, at frequencies relevant to gravitational wave detectors, as reported today in the scientific journal Nature.

Research - National - Science - Foundation - NSF

The research was supported by the National Science Foundation, or NSF, and the results hint at methods to improve the sensitivity of gravitational-wave detectors by developing techniques to mitigate the imprecision in measurements called "back action," thus increasing the chances of detecting gravitational waves.

Corbitt and researchers have developed physical devices that make it possible to observe—and hear—quantum effects at room temperature. It is often easier to measure quantum effects at very cold temperatures, while this approach brings them closer to human experience. Housed in miniature models of detectors like LIGO, or the Laser Interferometer Gravitational-Wave Observatory, located in Livingston, La., and Hanford, Wash., these devices consist of low-loss, single-crystal micro-resonators—each a tiny mirror pad the size of a pin prick, suspended from a cantilever. A laser beam is directed at one of these mirrors, and as the beam is reflected, the fluctuating radiation pressure is enough to bend the cantilever structure, causing the mirror pad to vibrate, which creates noise.

Gravitational - Wave - Interferometers - Power - Order

Gravitational wave interferometers use as much laser power as possible in order to minimize the uncertainty caused by the measurement of discrete photons and to maximize the signal-to-noise ratio. These higher power beams increase position accuracy but also increase back action, which is the...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!