Physicists get thousands of semiconductor nuclei to do 'quantum dances' in unison

phys.org | 2/21/2019 | Staff
jenn1020 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/physicistsge.jpg

A team of Cambridge researchers have found a way to control the sea of nuclei in semiconductor quantum dots so they can operate as a quantum memory device.

Quantum dots are crystals made up of thousands of atoms, and each of these atoms interacts magnetically with the trapped electron. If left alone to its own devices, this interaction of the electron with the nuclear spins, limits the usefulness of the electron as a quantum bit—a qubit.

Professor - Mete - Atatüre - Fellow - St

Led by Professor Mete Atatüre, a Fellow at St John's College, University of Cambridge, the research group, located at the Cavendish Laboratory, exploit the laws of quantum physics and optics to investigate computing, sensing or communication applications.

Atatüre said: "Quantum dots offer an ideal interface, as mediated by light, to a system where the dynamics of individual interacting spins could be controlled and exploited. Because the nuclei randomly 'steal' information from the electron they have traditionally been an annoyance, but we have shown we can harness them as a resource."

Cambridge - Team - Way - Interaction - Electron

The Cambridge team found a way to exploit the interaction between the electron and the thousands of nuclei using lasers to 'cool' the nuclei to less than 1 milliKelvin, or a thousandth of a degree above the absolute zero temperature. They then showed they can control and manipulate the thousands of nuclei as if they form a single body in unison, like a second qubit. This proves the nuclei in the quantum dot can exchange information with the electron qubit and can be used to store quantum information as a memory device. The findings have been published in Science today.

Quantum computing aims to harness fundamental concepts of quantum physics, such as entanglement and superposition principle, to outperform current approaches to computing and could revolutionise technology, business and research. Just like classical computers, quantum computers need a processor, memory,...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
2KXVI
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!