New geometric model improves predictions of fluid flow in rock

phys.org | 2/11/2019 | Staff
morica (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/newgeometric.jpg

Deep beneath the Earth's surface, oil and groundwater percolate through gaps in rock and other geologic material. Hidden from sight, these critical resources pose a significant challenge for scientists seeking to evaluate the state of such two-phase fluid flows. Fortunately, the combination of supercomputing and synchrotron-based imaging techniques enables more accurate methods for modeling fluid flow in large subsurface systems like oil reservoirs, sinks for carbon sequestration, and groundwater aquifers.

Researchers led by computational scientist James McClure of Virginia Tech used the 27-petaflop Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) to develop a geometric model that requires only a few key measurements to characterize how fluids are arranged within porous rock—that is, their geometric state.

OLCF - US - Department - Energy - DOE

The OLCF is a US Department of Energy (DOE) Office of Science User Facility located at DOE's Oak Ridge National Laboratory. The team's results were published in Physical Review Fluids in 2018.

The new geometric model offers geologists a way to uniquely predict the fluid state and overcome a well-known shortcoming associated with models that have been used for more than half a century.

Turn - Century - Hermann - Minkowski - Objects

Around the turn of the 20th century, the German mathematician Hermann Minkowski demonstrated that 3-D objects are associated with four essential measures: volume, surface area, integral mean curvature, and Euler characteristic. However, in the traditional computational models for subsurface flow, the volume fraction provides the only measure of the fluid state and relies on observational data collected over time for greatest accuracy. Based on Minkowski's fundamental analysis, these traditional models are incomplete.

"The mathematics in our model is different from the traditional model, but it works quite well," McClure said. "The geometric model is characterizing the microstructure of the medium using a very limited number of measures."

Minkowski - Result - Complex - Multiphase - Fluid

To apply Minkowski's result to the complex, multiphase fluid configurations found in porous rock, McClure's team needed...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.