Nano-encapsulation technology enhances DHA absorption for early brain development

phys.org | 1/31/2019 | Staff
applekip (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/polyusnanoen.jpg

The Hong Kong Polytechnic University (PolyU) today announced the findings on its novel nano-encapsulation technology for optimising the maternal and fetal absorption of docosahexaenoic acid (DHA). The research, conducted by PolyU's Department of Applied Biology and Chemical Technology (ABCT), aimed to address the delivery and absorption issues of DHA that affect its potency and efficacy.

DHA, a type of Omega-3 fatty acid naturally found in breast milk and fish oil, is an important nutrient for the development and function of brain. It is primarily obtained from diet, and preferentially transferred from mother to fetus across the placenta during fetal life. However, for people with problems in getting sufficient DHA from normal dietary sources, particularly those in late pregnancy, early childhood, or with cancer or declining cognitive abilities, DHA supplementation is recommended. Given DHA is highly unsaturated and is vulnerable to oxidation and degradation under acid conditions, it is uncertain that the intake of DHA through supplementation will be effectively delivered and absorbed in vivo.

Dr - Wang - Yi - Assistant - Professor

Led by Dr. Wang Yi, Assistant Professor of ABCT, and Professor Wong Man-sau, Professor of ABCT, the research team innovated a nano-encapsulation technology to protect DHA from oxidation. The team used Zein, an edible corn protein, as the encapsulation material to mimic milk fat globule membrane. The nano-encapsulation forms a core-shell structure to protect DHA in fish oil throughout gastric digestion and facilitate DHA absorption in brain, intestine and placenta.

"Our team innovated the nano-encapsulation technology, which is proven to be an effective technology to protect DHA from oxidation in vivo, thus enhancing the absorption and efficacy of DHA. Our findings also indicated that the technology can help overcome blood-brain barrier in DHA delivery. We therefore believe that the technology could be further applied to enhance the efficiency of drug delivery for the brain, such as those for patients...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!