Septin proteins act as cellular police to identify, imprison and kill 'superbug' Shigella

phys.org | 12/13/2018 | Staff
amyc9948 (Posted by) Level 3
Click For Photo: https://cf3e497594.site.internapcdn.net/tmpl/v5/img/phys_308px.png

Using state-of-the art technologies to image human cells and study infection at the level of a single bacterial cell, the research team, led by the London School of Hygiene & Tropical Medicine, has uncovered the strongest evidence yet that septins take Shigella prisoner.

Crucially, it reveals for the first time that these proteins can detect where bacteria will split for division and prevent it from doing so by forming cage-like structures around the bacteria.

Resistance - Threats - Health - Need - Drugs

Antimicrobial resistance is one of the biggest threats to global health. As well as the need to develop new drugs, such as antibiotics, novel ways to control bacterial infection are vitally important. Shigella is a human gut pathogen, infects more than 150 million people globally and causes up to 500,000 deaths every year. Due to the increasing number of drug resistant strains, Shigella is one of the 'superbugs' deemed a priority by the World Health Organization.

The research team say that although septins are a powerful, natural mechanism to restrict Shigella, future work is required to determine how septin biology can be harnessed for therapeutic purposes. It is hoped that these new findings may lead to a novel way to boost the human immune system and treat a wide variety of bacterial infections.

Author - Professor - Serge - Mostowy - London

Lead author Professor Serge Mostowy from the London School of Hygiene & Tropical Medicine said: "We are actively working to engineer this discovery for human health application. If we can use drugs to boost septin caging, we have a new way to stop infection."

In 2010, researchers first observed that septin cages can entrap Shigella, opening up the tantalising prospect of a new way to stop the bacteria spreading in the body. However, how cells recognise Shigella for entrapment, and the fate of entrapped bacteria, was mostly unknown.

Study

Study...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!