Vaccine signatures in humanized mice point to better understanding of infectious diseases

ScienceDaily | 11/28/2018 | Staff
Click For Photo: https://www.sciencedaily.com/images/2018/11/181128153950_1_540x360.jpg

Now a team at Princeton University has developed a comprehensive way to evaluate how immune responses of humanized mice measure up to actual humans. The research team looked at the mouse and human immune responses to one of the strongest vaccines known, a yellow fever vaccine called YFV-17D. The comparison of these "vaccine signatures" showed that a newly developed humanized mouse developed at Princeton shares significant immune-system responses with humans. The study was published in the journal Nature Communications.

"Understanding immune responses to human pathogens and potential vaccines remains challenging due to differences in the way our human immune system responds to stimuli, as compared to for example that of conventional mice, rats or other animals," said Alexander Ploss, associate professor of molecular biology at Princeton University. "Until now a rigorous method for testing the functionality of the human immune system in such a model has been missing. Our study highlights an experimental paradigm to address this gap."

Mice - Disease - Research - 1980s - Comparisons

Humanized mice have been used in infectious disease research since the late 1980s. Yet without rigorous comparisons, researchers know little about how well the mice predict human responses such as the production of infection-fighting cells and antibodies.

To address this issue, researchers exposed the mice to the YFV-17D vaccine, which is made from a weakened, or attenuated, living yellow fever virus. Vaccines protect against future infection by provoking the production of antibodies and immune-system cells.

Work - Researchers - Effect - YFV-17D - Mice

In previous work, the researchers explored the effect of YFV-17D on conventional humanized mice. But the researchers found that the mice responded only weakly. This led them to develop a mouse with responses that are more similar to those of humans.

To do so, the researchers introduced additional human genes for immune system components -- such as molecules that detect foreign invaders and...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!