Scientists shed light on semiconductor degradation mechanism

ScienceDaily | 11/13/2018 | Staff
elio25elio25 (Posted by) Level 3
The study was published in the Journal of Applied Physics in September of 2018. The scientists used Silicon Carbide (SiC) material for the experiment. SiC is becoming a more popular alternative to standard semiconductor materials for electronic devices. The study is based on a specific type of SiC material that is characteristic for its structure, or 4H-SiC. This material was exposed to both photoluminescence as well as various temperatures as a means to create specific kinds of deformations that lead to the degradation of SiC-based devices. The scientists were able to observe how these deformations actually take place on an atomic level.

"We quantified the speed at which electric charge particles move in regions of 4H-SiC material where the atomic structure has been defected. This will usher discoveries of ways to suppress degradation of SiC-based devices such as power electronic systems," states Dr. Masashi Kato, an associate professor at the Frontier Research Institute for Materials Science in NITech.

Order - Mechanism - Deformation - Degradations - Researchers

In order to better understand the actual mechanism behind atomic deformation that lead to degradations, the researchers used photoluminescence to induce movement of electric charge particles and measured the speeds at which that took place. They looked for specific factors that may limit particle movement, including the material that was used.

They also tested the effects of increasing temperature, specifically looking to see if higher temperatures will increase or decrease rate...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!