Bioceramics power the mantis shrimp's famous punch

phys.org | 10/18/2018 | Staff
oxboy (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/bioceramicsp.jpg

Researchers in Singapore can now explain what gives the mantis shrimp, a marine crustacean that hunts by battering its prey with its club-like appendages, the most powerful punch in the animal kingdom. In a paper publishing October 19 in the journal iScience, they show that a saddle-shaped structure in the mantis shrimp's limbs, which acts like a spring to store and then release energy, is composed of two layers made of different materials. Measuring the composition and the micro-mechanical properties of the layers—which are mostly bioceramic and mostly biopolymeric, respectively—allowed the researchers to simulate how the saddle stores such large amounts of elastic energy without breaking.

"Nature has evolved a very clever design in this saddle," says senior author Ali Miserez, a materials scientist who studies unique biological structures at Nanyang Technological University in Singapore. "If it was made of one homogeneous material, it would be very brittle. It would for sure break."

Research - Lab - Biologist - Sheila - Patek

Previous research from the lab of biologist Sheila Patek had examined the mantis shrimp's dactyl clubs—the appendages they use to attack their prey—and suggested that muscles alone couldn't be creating the amount of force with which the crustaceans strike. Other research had hypothesized that the saddle might be used to store elastic energy, but studying the structure and mechanical properties of the saddle was challenging. "The movement is so fast that people hadn't been able to focus just on the saddle itself, which is why we needed to study it by computer simulation," says Miserez.

His team analyzed the composition of the saddle, making micro-measurements of the materials' mechanical properties to develop a simulation of the mantis shrimp's strike. They found that the top layer of the saddle is composed mostly of a relatively brittle bioceramic similar to tooth or bone, while the underside contains a higher content of biopolymers,...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!