Australian astronomers have been able to double the number of mysterious fast radio bursts discovered so far

Universe Today | 10/17/2018 | Staff
DanRules394 (Posted by) Level 3
Click For Photo: https://www.universetoday.com/wp-content/uploads/2018/10/ASKAP_2resized-1024x683.jpg










Fast Radio Bursts (FRBs) have become a major focus of research in the past decade. In radio astronomy, this phenomenon refers to transient radio pulses coming from distant cosmological sources, which typically last only a few milliseconds on average. Since the first event was detected in 2007 (the “Lorimer Burst”), thirty four FRBs have been observed, but scientists are still not sure what causes them.

With theories ranging from exploding stars and black holes to pulsars and magnetars – and even messages coming from extra-terrestrial intelligences (ETIs) – astronomers have been determined to learn more about these strange signals. And thanks to a new study by a team of Australian researchers, who used the Australia Square Kilometer Array Pathfinder (ASKAP), the number of known sources of FRBs has almost doubled.

Study - Details - Research - Nature - Dr

The study that details their research, which recently appeared in the journal Nature, was led by Dr. Ryan Shannon – a researcher from the Swinburne University of Technology and the OzGrav ARC Centre of Excellence – and included members from the International Center for Radio Astronomy Research (ICRAR), the Australia Telescope National Facility (ATNF), the ARC Center of Excellence for All-Sky Astrophysics (CAASTRO), and multiple universities.

As they state in their study, attempts to understand FRBs as a whole have been hindered by a number of factors. For one, previous searches have been conducted with telescopes that vary in terms of sensitivity, at a range of different radio frequencies, and in environments with different levels of radio-frequency interference – which are the result of human activity.

Searches - Nature - Sources - Resolution - Instruments

Second, past searches have been complicated by the transient nature of sources and the poor angular resolution of detecting instruments, which has resulted in uncertainty when it comes to the sources of FRBs and their brightness. To address this, the team conducted a well-controlled, wide-field radio survey for...
(Excerpt) Read more at: Universe Today
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!