Highly durable silicon carbide (SiC) power semiconductor TED-MOS for energy saving in electric vehicle motors

phys.org | 9/4/2018 | Staff
adele2234 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/highlydurabl.jpg

Hitachi, Ltd. today announced the development of an original energy saving power semiconductor structure, TED-MOS, using next-generation silicon carbide (SiC) material that contributes to saving energy in electric vehicles (EV). This power semiconductor is a new device using a fin-structured trench MOSFET based on the conventional DMOS-FET, a SiC transistor of power semiconductor. Using this new device, an energy saving of 50 percent was confirmed as the structure reduces the electric field strength, an index of durability, by 40 percent and resistance by 25 percent compared to the conventional DMOS-FET. Hitachi intends to apply this device in motor drive inverters which are a core component of EVs to increase energy efficiency. Furthermore, by utilizing this technology not only in EVs but also in a range of electrical transducers used in societal infrastructure systems, Hitachi hopes to contribute to efforts to reduce global warming and the realization of a low-carbon society.

With the anticipated increase in global energy demand, targets to reduce environmental load are being set through initiatives such as the SDGs and COP21 to realize a sustainable society. As the adoption of EVs is also expected to increase dramatically, reducing EV power consumption is considered critical, Thus, the use of power semiconductors using SiC as the semiconductor material which can deliver significant energy savings for inverters, is attracting much attention. One issue, however, is that in SiC power semiconductor, unlike silicon (Si) devices, the resistance varies greatly depending on the crystal plane. Although trench SiC MOSFET (Fig. 1(2)) has been proposed as a means to facilitate the flow of electric current on the crystal plane at a lower resistance in comparison to the conventional DMOS-FET (Fig. 1(1)) structure, as electric fields easily concentrate at the edges of the trench on the base plane, it was difficult to simultaneously achieve high...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!