Skyrmion reshuffler comes to the aid of stochastic computing

phys.org | 7/6/2018 | Staff
brunodeuce44 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/skyrmionresh.jpg

Researchers have designed a "skyrmion reshuffler"—just as a card shuffler shuffles a deck of cards, the skyrmion reshuffler does the same with a type of quasiparticle called magnetic skyrmions. The reshuffler is the first low-energy, compact device that can reshuffle signals of any kind (skyrmions, electrons, etc.) with a high efficiency, which may enable it to address one of the long-standing challenges facing an alternative type of computing called stochastic computing.

The researchers, Daniele Pinna and coauthors from the University of Paris-Saclay, have published a paper on the new method of manipulating skyrmions for stochastic computing in a recent issue of Physical Review Applied.

Skyrmions - Defects - Field - Field - Properties

Magnetic skyrmions are tiny defects in a magnetic field where the magnetic field is reversed. One of their interesting properties is their ability to move freely along the two-dimensional surface of the magnetic field. When many skyrmions come together, their high mobility causes them to act as a freely moving gas in two dimensions.

In recent years, magnetic skyrmions have captured the attention of researchers because their tiny size (roughly 10 nm) and high mobility suggest that they have the potential to serve as information carriers for future miniaturized, high-speed, low-energy devices. So far, however, most of the work in the emerging field of skyrmionics has used skyrmions in one-dimensional tracks, rather than taking advantage of their full two-dimensional freedom.

Skyrmion - Reshuffler - Study - Devices - Dynamics

The skyrmion reshuffler presented in the new study is one of the first devices to harness the dynamics of skyrmions as a two-dimensional gas. The reshuffler receives an input stream of skyrmions and thermally reshuffles their order, while still maintaining the same skyrmion states as in the original stream. That is, if the skrymions were encoding data using 0's and 1's, then both the input and output bitstreams would have the same number of 0's and 1's. Consequently, the probability...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
The American Government, working tireless for everyone, except Americans.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!