Higgs boson, top quarks linked in milestone collider discovery

phys.org | 6/13/2018 | Staff
Refel_4309 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/higgsbosonto.jpg

An observation made by an experiment at the Large Hadron Collider involving Florida Institute of Technology physicists Francisco Yumiceva, Marcus Hohlmann and Marc Baarmand has for the first time connected the two heaviest elementary particles of the Standard Model.

Using the Compact Muon Solenoid (CMS) detector, which acts as a giant, high-speed camera taking 3-D 'photographs' of particle collisions from all directions up to 40 million times each second, scientists at the CERN-based collider near Geneva, Switzerland, announced findings that reveal how strongly the Higgs boson interacts with the heaviest known elementary particle, the top quark.

Measurements - CMS - Team - Collaboration - ATLAS

The measurements from the CMS team and another collaboration known as ATLAS indicate the Higgs boson has a critical role in the large value of the top quark mass. While this is certainly a key feature of the Standard Model – the overarching theory in physics that describes the basic components of matter and the forces that govern their interactions – this is the first time it has been verified experimentally with what one spokesman called "overwhelming significance."

In the Standard Model, the Higgs boson can couple to particles called fermions. Electrons and protons that make regular atoms are examples of fermions. The heaviest known fermion is the top quark. Generally, scientists can measure the coupling strength of the Higgs boson to fermions by measuring the decay rate of the Higgs boson to other lighter particles. But because the Higgs boson cannot decay into a pair of top quarks, the only way to measure this coupling is to study the production of a Higgs boson in associations with top quarks.

(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!