Investigators suggest that brain circuits could unlock new psychiatric treatments

ScienceDaily | 6/11/2018 | Staff
itsdonaldk (Posted by) Level 3
"At almost any point in time, brain activity is determined by a dynamic balancing act between excitatory and inhibitory neurotransmitters. These shifts of excitation and inhibition sculpt essentially all brain functions, including cognition, emotion, and the brain's protective mechanisms against drug dependence," explained lead author Elif Engin, PhD, associate neuroscientist in the Laboratory of Genetic Neuropharmacology at McLean Hospital and assistant professor of psychiatry at Harvard Medical School. "Large disruptions of this delicate balance can lead to epileptic seizures, while more subdued disruptions underlie many disorders, including autism spectrum disorders and several psychiatric disorders."

Through her own lab work, as well as her findings as part of the review of recent literature, Engin believes that having greater clarity on the impact of certain circuits within the brain will not only allow for better understanding of brain function, but also better development of treatment options.

Engin - Chemical - Inhibition - Brain - Acid

According to Engin, the major chemical responsible for inhibition in the brain is gamma-aminobutyric acid (GABA).

GABA binds to specific proteins on the surface of nerve cells, GABAA receptors, to inhibit neuronal activity. These receptors come in different configurations, called subtypes, and over the past 20 years, researchers have learned a lot about the functions of each receptor subtype. A variety of drugs, including benzodiazepines (e.g., Valium or Xanax) and general anesthetics, increase the activity of these receptors. It was found, for example, that one receptor subtype mediated sedation while another subtype mediated the anxiety-reducing activity of such drugs.

Receptor - Subtype - Functions - Blueprint - Development

While defining receptor subtype functions has thus provided a blueprint for the development of new drugs, knowledge about how specific circuits and specific cell populations in the brain shape specific behaviors may further expand and enhance treatments. "In our review, we introduced the novel concept of 'circuit pharmacology,' a term describing how specific GABAA receptor subtypes in circuit- and cell type-specific...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!